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ABSTRACT: This paper has been devoted to
the study of  Finsler space with flag
curvature. Section 1 is devoted to the study of
theory of indicatrix. Section 2 delineates to the
metric  non-linear  connections. Section 3 is
devoted to the study of flag curvature in Finsler
space.
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I. INTRODUCTION

Let M" be a Minkowski space with the
indicatrix F(X") = 1, wherein X'(i=1,2,3,----,
n) may be regarded as components of a vector.
The indicatrix F(X') =1 is given by X'=X'(u%
with n-1 parameters u®(a= 1, 2, 3,- - - -,n-1) that
is to say, we shall regard the indicatrix as
an (n-1)-dimensional ~ manifold 1" with
coordinate system (u%). The indicatrix is given
by [4]: .
(L1 F(X)=gi(X) XX =1,

If the Minkowski space M" be a  Riemannian
space with the metric tensor given by g(X),
then the induced metric tensor gqs(u) on the
indicatrix I is given by [4]:
(12)  Q9up = Gop(u) = gij X'uX's

Wherein

(13) Xy=(OX/0).
Differentiating equation (1.1) by u® and using
equation (1.3), we get
(14) gy XWX =0

) This equation shows that the vector
X'is normal unit vector of 1" '

The covariant derivative of X', and

using D-symbol, we get [6]:
(15) DOLDXIB = HIaBy

(1.6) Dy X = hyX’
and _ S _
(L.7)  DuX'p=Lo XWX XS - X

Differentiating equation (1.4)
covariantly and using D-symbol, we obtain
(1.8)  giX'Xlp+gij (DpX')X' = 0
and
(1.9) Qop + haﬁz 0.

By virtue of equations (1.2) and (1.8)
yields o
(110)  gyp+ Gi(DpX')X' =0

From equations (1.6) and (1.10), we
get -

(1.11)  gep+ GijhpX'X =0,

In view of equations (1.1) and (1.11),
we obtain
(112) Jop hﬁa: 0,

Comparing equations (1.9) and (1.12)
yields
(113) hapz hﬁa,

Hence, hyg is symmetric tensor of

In view of equations (1.2) and (1.9),
we obtain o
(1.19) haﬁ: - gin'aXJB

Contracting equation (1.9) with g%, we

I n-1

obtain
(115) gayhuﬁ =- DYB
Contracting equation (1.9) with g*
yields
(1.16)  g""heg =-(n-1).

1. METRIC NON-LINEAR
CONNECTIONS _

Consider a differentiable vector field X'in a
Finsler space F", and there is given a set of
functions T",(x,X) depending on this field,
wherein T (x,X) are homogeneous of degree
one in the X' Then absolute differential is
defined as _ _

(2.1)  8X'=dX' + IH(x,X)dx"
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Next, consider a covariant vector field Y;in
the Finsler space F". Then the absolute
differential of Y;is defined as
(22) Y, =dY;-TZ(xY)dx*
Wherein T (x,Y) is homogeneous of
degree one in Y;. _
Let us consider a relation between X'
and Y; is _
23 Y=g, |
Contracting equation (2.3) by X' and
using equation (1.1), we get
24) X'Y;=1,
The absolute differential 8Y; coincides
with the covariant component of 8X', i.e.
(25) oY= gij ox!
Consequently yields _
(26)  TA(x.Y) =gy X)X - g TH(x,X).
Next, we shall find out another form
of the coefficients [y and T%. The following
equation in F(x,X) is o
(27)  Fu=(F/0X) - (0F/0 X)G (x,X) =0
Wherein _
(28) G (x,X)=(8G/0X")
and _ )
(29)  G'(x,X) = (1/2){nIX"X .
From equations (2.1) and (2.7), we
have _ _ )
(210)  T%(x,X) = T'(x,X) + GY(x,X),
Wherein  T'(x,X) is an arbitrary
tensor homogeneous of degree one in X'
which satisfies the relations
(211) g X'Tk=0
and o _
(212) Blj Tjk = le.
Therefore, we take _
(213)  T%(%,Y) = T5k(%,Y) + G j(x.0(x, Y)Y,
Wherein T*j is an arbitrary tensor
homogeneous of degree one in Y; which is
restricted by the relation T*j X' =0.
In view of equations (2.10) and (2.13),
the equation (2.6) assumes the form _
(2.14)  T*(x,Y)=-gy T+ {(Ogi/0x')X"-gyG -
G'iYi}
But o _
(2.15)  gyG's X' = (1/2)(0gjm/x)X! X"
= X (i X" -{m n}ClaX™ X",
Differentiating equation (2.15) by X"
yields _ _
(2.16)  (Bgn/Ox)X™ = ginG'  + YiG' i,
Inserting  equation (2.16) in the
equation (2.14), we obtain
(217) T =-0iTk
Since
(218) Tjk = gijTIk-
Using equation (3.18) in the equation
(2.17), we get

(219) T*jk =- Tjk.
Theorem 2.1:

If the coefficients FZhjk of a relative
connection parameters is symmetric  with
indices j and k then the tensor Ty is also
symmetric with indices j and k.

Proof:

In view of equations (2.13) and (2.19),
we obtain
(220) %, Y)=-Ti(x,0(x,Y)) +
G'i(x.0(x.Y))Y;

Interchanging the indices j and k in
equation (2.20), we get
(221) T%(xY) = -
Tkj(X,¢(X,Y))+GIij(X,(I)(X,Y))Yi,

Sincell T"j(x,Y) is symmetric with j
and k, then equation (2.21) reduces in the
form _
(222) THMXY) = Ty o Y)+G (X,
d)(X’Y))Yi:

From equations (2.20) and (2.22), we
obtain
(2.23)  Ti=Tq,

Hence, Tj is symmetric with indices j
and k.

I1l. FLAG CURVATURE IN FINSLER
SPACE

If M is an n-dimension C” space and F is the
Finsler metric then we assume that F"(M,F) be a
Finsler space. F is assumed to be a C” function on
the slit tangent bundle TxM° = TxM\{0} satisfying
the condition:
(@) F is C* on TxM°
(b) F(x,ky) = k F(x,y), for any xeM,yeT\M
and k>0
© = (U2){6%FIoy'ey’},
is positive definite at every point (x,y) of TxM°. It
is to be noted that (x*y°) are the coordinates on
TxM where (x*) are the coordinates on M.
(001 0871 0018Y) is the local fram field on TxM.
Then the Liouville vector field
(3.1) L=y*ouoyd)
is defined as a global section of the vertical vector
bundle TxM°.
Further,
(32) L=IF
is a unit vector field,
(33) gl fIPP=1,
Wherein
(34) FF=y.
Now, Let us assume a flag yAu at xeM determined
by y and u= u*(@[] 6X). Flag curvature is first used
by L. Berwald [3]. The flag curvature for the flag
yAu is the number[2,1]:
(3.5) K= (Rabuaub)/{(gabuaub) - (gabyaub) 2}-
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Flag curvature K must be constant when
the flag curvature K depends neither on y* nor on
u®. Also it is well known that F" has constant flag
curvature K iff
(3.6) Rapn = K hap,

Wherein hy, are the components of the angular
metric on F" defined by
(3-7) hab = Gab - Ialb-

The Riemannian curvature tensor of
Berwald connection is defined as
(3.8) K = AG% + GG’ - AdGlhc +

Gechaed-

If we take
(3-9) Kabc = Kaobc
and

(310) K% =Ky,

Consequently, yields
(3-11) Kabc = (1/3)(abKac - 8cKab)-

The projective Weyl curvature is
expressed as follows [7,8]:
(3.12)  Wihey = Kheg + {1/(n* 1)} {8%(Kae~ Kea)
+ 8%Kpe ~ 8% Kpat+ F P 0p(Kae ™ Kea),

Wherein
(3.13)  Kap= NKyp + Kpa + F I 0K e

It is noteworthy that a Finsler metric is
one of scalar flag curvature iff
(314) Wabcd =0.
Let us consider a mapping ¢ : F" — F" and ¢ be
diffeomorphism. Then ¢ is said to be a projective
mapping if there exists a positive homogeneous
scalar function P of degree one satisfying the
relation
(3.15) A=G*+FPI,
Wherein P is the projective factor [9].
Under a projective transformation with projective
factor P, the Riemannian curvature tensor of
Berwald connection change is given by the
following expression
(3.16) K% = KPhea+ FI* 85Qcq + 8%Qca + 8% 3bQu

—8%06Qc,

Wherein
(3.17) Q=X P-PP,
and

(3.18)  Qap = 94Qp— Qo

It is noted that if Qg = O then a projective
transformation with projective factor P is said to be
C-projective.
(319)  £xG%hea = 8°Pea + 8°cPpa + 8°4Pen + FI* Pheg
and
(3.20)  £xK%ca = 8%(Parc - Perg) + 8% Poic — 8° Poug
+ FI* 0p(Pyrc - Pea).

Since
(3.21)  Quc = Puic - Pein,

We have [5,7]:
(3.22)  04Ppic=Papic - PeGeabm

Contracting a and c in (3.21), yield
(3.23)  £xKpg = Paip - NPpig + F Ppgul",
Hence, obtain
(3.24)  £x(FI° dgKpe) = - (N-1)F Poaun I",
Consequently yields
(3.25)  £x(Koa + {1/(n+1)}FI° uKspe) = Py - NPpyg
and
(3.26) £x(Kap + {U(N+1)IFI° 0pKg) = Prug —
NP,
As a consequence of equations (3.25) and
(3.26), we get
(3.27) Ppg = {U(A-n)}Ex[Kgp + {1/(n+1)}FE
OpKge + NKpg + {n/(N+1) }FI® 03K pe].
If Qp =0, the equation (3.20) reduces to
(3.28)  £xK’hea = 8% Poic- 8° Poua,
By virtue of equations (3.27) and (3.28),
we obtain new type of tensor
(329) Wiy =K% - {U1-0°}[8% {Kuc
Hn/(n+1)} FIOcKpe 0pKee)t + 8°fKoa +
{n/(n+1)}FI° (9gKpe - 06K ¢e) ],
As a consequence of
(3.30) PIP0pKa=0
and
(3.31) W= WP’
We obtain
(3.32) W= K& - {1/(1-n)}[FP Ko — 5% Koo]-
The tensor K is called C-projective Weyl
curvature. If C-projective Weyl-curvature is vanish
then a Finsler metric F is called C-projective Weyl
metric.
In view of above discussions, we have
the following theorems:
Theorem 3.1:
Let F be a C-projective Weyl metric. Then prove
that F is a Weyl metric.
Proof:
Let us assume that
(3.33) K& - {1/(1-n®)}FIP Koe— 8% Koo] = 0,
Contracting (3.33) by Pyields
(3.34)  F*Koe— . Koo =0,
Consequently,
(3.35) Ko =F? I Koo,
By virtue of equations (3.33) and (3.35),
we obtain
(3.36) K= {1/(1-n*)}h" Koo,
Consequently F is said to be scalar flag
curvature. Therefore F is a Weyl metric.

Theorem 3.2:

Let F be a Finsler metric of scalar flag curvature «.
Then C-projective Weyl curvature is defined as
W2, = (1/3)F3F k., wherein k¢ = d¢k.

Proof:

The Riemannian curvature of Berwald connection
is given by[3]:
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(337) K =
8%Fe)

+ (U3)[FA(h cicoa-Pacne) +aF (28%Fb-28% Fe
- Obel®) + kcF(28%Fs - 26%Fq - gual®),

K(8°Oba - 8%Ob) + KoF(8°CFy -

Wherein
(3.38)  Kpc = Ockp.

Consequently yields
(3.39) K% =«kF°h%,

As a consequence, we obtain [9]:
(340) Kpg = (n-1)(kgpa + FFaky) + (1/3)(n-
2)(F2Kbd
+ ZFFbKd),
(341) Kpo= (n*-1)xF?,
(3.42)  Kqe = (n-1)kFF¢ + (1/3)(n-2)F?k,
(3.43) Ko, = (n*-1)(kFF, + (1/3)F,

By virtue of equations (3.32), (3.39),
(3.41) and (3.43), we obtain
(3.44) W2 = (113)F°F k..

Theorem 3.3:

If F is a Finsler metric of constant flag curvature
with K = «. Then F is C-projective Weyl metric.
Proof:

If F is of constant flag curvature x then equation
(3.37) reduces in the form

(3.45)  K%cq = K(8°0bd - 8°4Tbc),
Yields

(3.46)  Kpg = - (n-1)Kghd,

and

(347)  Kpa = - ("°-1)og,

By virtue of equations (3.29), (3.46) and
(3.47) yields

(348) W@ =0,
Consequently yields
(3.49) W% =0.

In Finsler metric F of scalar flag curvature
with dimension n>3, we have a projective
transformation with the projective factor P, we
have the following conditions:

(3.50)  Sap = Sap + {(n+1)/2}Pa,
and

(3-51) S‘ebGeaz Seb'Gea"' PSab + {(n+1)/2}(PebGea
+ PPy).

In view of above discussion, we have the
following:

Theorem 3.4:
T-curvature is C-projective invariant.
Proof:
For a projective transformation, we have
(3.52) T = FSancl,
By virtue of equations (3.50), (3.51) and
(3.52) yields

(353) tw = TaH{(n*+1)/2H(FIAPa-PesG"a -
PaeGeb)y

Consequently follows
(3.54)  FIF0,Quc = FIPAP sy — PeyG® — PeaGls,

From equations (3.53) and (3.54), we get
(3.55)  tap = Tap + {(N+1)/23FI°0;Qpe,

If we take C-projective mapping i.e. Qg =
0. Follows
(3.55) 1w = Tap-

Hence, 1 -curvature is C-projective
invariant.
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