A Note on Flag Curvature in Finsler Space

Indiwar Singh Chauhan ${ }^{1}$, T.S. Chauhan ${ }^{2}$, Pankaj Kumar Sharma ${ }^{3}$, Mohammad Gauhar ${ }^{4}$
${ }^{1}$ Assistant Professor, Bareilly College, Bareilly, (U.P.),
${ }^{2}$ Associate Professor, Bareilly College, Bareilly, (U.P.),
${ }^{3}$ Principal, Baba Ramdas P.G. College, Bareilly(U.P.),
${ }^{4}$ Research Scholar, IFTM University, Moradabad(U.P.) Corresponding Author: Indiwar Singh Chauhan

ABSTRACT: This paper has been devoted to the study of Finsler space with flag curvature. Section 1 is devoted to the study of theory of indicatrix. Section 2 delineates to the metric non-linear connections. Section 3 is devoted to the study of flag curvature in Finsler space.
KEYWORDS: Minkowski space, C-projective, Flag curvature, Finsler space.

I. INTRODUCTION

Let M^{n} be a Minkowski space with the indicatrix $F\left(X^{i}\right)=1$, wherein $X^{i}(i=1,2,3,---$, n) may be regarded as components of a vector. The indicatrix $F\left(X^{i}\right)=1$ is given by $X^{i}=X^{i}\left(u^{\alpha}\right)$ with $\mathrm{n}-1$ parameters $\mathrm{u}^{\alpha}(\alpha=1,2,3,-\cdots-, \mathrm{n}-1)$ that is to say, we shall regard the indicatrix as an ($\mathrm{n}-1$)-dimensional manifold $\mathrm{I}^{\mathrm{n}-1}$ with coordinate system $\left(\mathrm{u}^{\alpha}\right)$. The indicatrix is given by [4]:

$$
\text { (1.1) } \quad F^{2}(X)=g_{i j}(X) X^{i} X^{j}=1
$$

If the Minkowski space M^{n} be a Riemannian space with the metric tensor given by $\mathrm{g}_{\mathrm{ij}}(\mathrm{X})$, then the induced metric tensor $\mathrm{g}_{\alpha \beta}(\mathrm{u})$ on the indicatrix $\mathrm{I}^{\mathrm{n}-1}$ is given by [4]:
(1.2) $\quad \mathrm{g}_{\alpha \beta}=\mathrm{g}_{\alpha \beta}(\mathrm{u})=\mathrm{g}_{\mathrm{ij}} \mathrm{X}_{\alpha}^{\mathrm{i}} \mathrm{X}_{\beta}^{\mathrm{j}}$

Wherein
(1.3) $\quad \mathrm{X}^{\mathrm{i}}{ }_{\alpha}=\left(\square \mathrm{X} / \square \mathrm{u}^{\alpha}\right)$.

Differentiating equation (1.1) by u^{α} and using equation (1.3), we get
(1.4) $\mathrm{g}_{\mathrm{ij}} \mathrm{X}_{\alpha}^{\mathrm{i}} \mathrm{X}^{\mathrm{j}}=0$

This equation shows that the vector X^{i} is normal unit vector of $\mathrm{I}^{\mathrm{n}-1}$.

The covariant derivative of X_{α}^{i} and using D-symbol, we get [6]:
(1.5) $\mathrm{D}_{\alpha} \mathrm{X}^{\mathrm{i}}{ }_{\beta}=\mathrm{H}_{\alpha \beta}^{\mathrm{i}}$,
(1.6) $\quad D_{\alpha} X^{j}{ }_{\beta}=h_{\alpha \beta} X^{i}$
and
(1.7) $\left.\quad D_{\alpha} X^{i}{ }_{\beta}=\square_{\alpha} X^{i}{ }_{\beta}+\left\{{ }_{j}{ }_{j}^{\mathrm{i}}\right\} X_{\alpha}^{\mathrm{j}} X_{\beta}^{\mathrm{k}}-\left\{{ }_{\alpha}{ }_{\beta}\right\}\right\} X_{\gamma}^{\mathrm{i}}$.

Differentiating equation (1.4)
covariantly and using D -symbol, we obtain
(1.8) $\quad \mathrm{g}_{\mathrm{ij}} \mathrm{X}_{\alpha}^{\mathrm{i}} \mathrm{X}^{\mathrm{j}}{ }_{\beta}+\mathrm{g}_{\mathrm{ij}}\left(\mathrm{D}_{\beta} \mathrm{X}_{\alpha}^{\mathrm{i}}\right) \mathrm{X}^{\mathrm{j}}=0$
and
(1.9) $g_{\alpha \beta}+h_{\alpha \beta}=0$.

By virtue of equations (1.2) and (1.8)
yields
(1.10) $\quad g_{\alpha \beta}+g_{i j}\left(D_{\beta} X_{\alpha}^{i}\right) X^{j}=0$

From equations (1.6) and (1.10), we get
(1.11) $g_{\alpha \beta}+g_{i j} h_{\beta \alpha} X^{i} X^{j}=0$,

In view of equations (1.1) and (1.11), we obtain
(1.12) $g_{\alpha \beta}+h_{\beta \alpha}=0$,

Comparing equations (1.9) and (1.12)
yields
(1.13) $h_{\alpha \beta}=h_{\beta \alpha}$,

Hence, $\mathrm{h}_{\alpha \beta}$ is symmetric tensor of $\mathrm{I}^{\mathrm{n}-1}$.
In view of equations (1.2) and (1.9),

we obtain

(1.14) $h_{\alpha \beta}=-g_{i j} X_{\alpha}^{i} X^{j}{ }_{\beta}$

Contracting equation (1.9) with $\mathrm{g}^{\alpha \gamma}$, we
obtain
(1.15) $\quad g^{\alpha \gamma} h_{\alpha \beta}=-\square_{\beta}^{\gamma}$

Contracting equation (1.9) with $\mathrm{g}^{\alpha \beta}$
yields
(1.16) $\quad g^{\alpha \gamma} h_{\alpha \beta}=-(n-1)$.

II. METRIC NON-LINEAR CONNECTIONS

Consider a differentiable vector field X^{i} in a Finsler space F^{n}, and there is given a set of functions $\Gamma^{1 \mathrm{i}}{ }_{\mathrm{k}}(\mathrm{x}, \mathrm{X})$ depending on this field, wherein $\Gamma_{k}^{1 i}(x, X)$ are homogeneous of degree one in the X^{i}. Then absolute differential is defined as
(2.1) $\quad \delta X^{i}=d X^{i}+\Gamma^{1 i}{ }_{k}(x, X) d x^{k}$

Next, consider a covariant vector field Y_{i} in the Finsler space F^{n}. Then the absolute differential of Y_{i} is defined as
(2.2) $\quad \square Y_{i}=d Y_{i}-\Gamma_{i k}^{2}(x, Y) d x^{k}$

Wherein $\Gamma_{i k}^{2}(x, Y)$ is homogeneous of degree one in Y_{i}.

Let us consider a relation between X^{i} and Y_{i} is (2.3) $\quad Y_{i}=g_{i j} X^{j}$,

Contracting equation (2.3) by X^{i} and using equation (1.1), we get
(2.4) $\quad X^{i} Y_{i}=1$,

The absolute differential δY_{i} coincides with the covariant component of $\delta \mathrm{X}^{\mathrm{i}}$, i.e.
(2.5) $\quad \delta \mathrm{Y}_{\mathrm{i}}=\mathrm{g}_{\mathrm{ij}} \delta \mathrm{X}^{\mathrm{j}}$

> Consequently yields
(2.6) $\quad \Gamma^{2}{ }_{\mathrm{ik}}(\mathrm{x}, \mathrm{Y})=\left(\partial \mathrm{g}_{\mathrm{ij}} / \square \mathrm{x}^{\mathrm{k}}\right) \mathrm{X}^{\mathrm{j}}-\mathrm{g}_{\mathrm{ij}} \Gamma_{\mathrm{k}}^{\mathrm{i}} \mathrm{k}_{\mathrm{x}}(\mathrm{X})$.

Next, we shall find out another form of the coefficients $\Gamma^{1 \mathrm{i}}{ }_{\mathrm{k}}$ and $\Gamma^{2}{ }_{\mathrm{jk}}$. The following equation in $F(x, X)$ is
(2.7) $\quad \mathrm{F}_{, \mathrm{k}}=\left(\partial \mathrm{F} / \square \mathrm{X}^{\mathrm{k}}\right)-\left(\partial \mathrm{F} / \square \mathrm{X}^{\dot{j}}\right) \mathrm{G}^{\mathrm{j}}{ }_{\mathrm{k}}(\mathrm{x}, \mathrm{X})=0$

Wherein
(2.8) $\quad \mathrm{G}_{, \mathrm{k}}^{\mathrm{j}}(\mathrm{x}, \mathrm{X})=\left(\partial \mathrm{G}^{\mathrm{j}} / \partial \mathrm{X}^{\mathrm{k}}\right)$
and
(2.9) $\quad \mathrm{G}^{\mathrm{i}}(\mathrm{x}, \mathrm{X})=(1 / 2)\left\{{ }_{\mathrm{h}}^{\mathrm{i}}{ }^{\mathrm{i}}\right\} \mathrm{X}^{\mathrm{h}} \mathrm{X}^{\mathrm{k}}$.

From equations (2.1) and (2.7), we
have
(2.10) $\quad \Gamma^{1 i}{ }_{k}(x, X)=T_{k}^{i}(x, X)+G_{k}^{i}(x, X)$,

Wherein $\mathrm{T}_{\mathrm{k}}^{\mathrm{i}}(\mathrm{x}, \mathrm{X})$ is an arbitrary
tensor homogeneous of degree one in X^{i} which satisfies the relations
(2.11) $\mathrm{g}_{\mathrm{ij}} \mathrm{X}^{\mathrm{i}} \mathrm{T}_{\mathrm{k}}^{\mathrm{j}}=0$
and
(2.12) $\quad B_{j}^{i} \mathrm{~T}_{\mathrm{k}}^{\mathrm{j}}=\mathrm{T}_{\mathrm{k}}^{\mathrm{i}}$.

Therefore, we take
(2.13) $\quad \Gamma_{j k}^{2}(x, Y)=T^{*}{ }_{j k}(x, Y)+\mathrm{G}^{\mathrm{i}}{ }_{\mathrm{jk}}(\mathrm{x}, \phi(\mathrm{x}, \mathrm{Y})) \mathrm{Y}_{\mathrm{i}}$,

Wherein $T^{*}{ }_{j k}$ is an arbitrary tensor homogeneous of degree one in Y_{i} which is restricted by the relation $\mathrm{T}^{*}{ }_{\mathrm{jk}} \mathrm{X}^{\mathrm{j}}=0$.

In view of equations (2.10) and (2.13), the equation (2.6) assumes the form
(2.14) $\quad \mathrm{T}^{*} \mathrm{jk}(\mathrm{x}, \mathrm{Y})=-\mathrm{g}_{\mathrm{ij}} \mathrm{T}_{\mathrm{k}}^{\mathrm{i}}+\left\{\left(\partial \mathrm{g}_{\mathrm{ij}} / \partial \mathrm{x}^{\mathrm{k}}\right) \mathrm{X}^{\mathrm{i}}-\mathrm{g}_{\mathrm{ij}} \mathrm{G}_{\mathrm{k}^{-}}^{\mathrm{i}}\right.$
$\mathrm{G}_{\mathrm{ijk}}^{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}$ \}
But
(2.15) $\quad \mathrm{g}_{\mathrm{ij}} \mathrm{G}_{\mathrm{k}}^{\mathrm{i}} \mathrm{X}^{\mathrm{j}}=(1 / 2)\left(\partial \mathrm{g}_{\mathrm{jm}} / \partial \mathrm{x}^{\mathrm{k}}\right) \mathrm{X}^{\mathrm{j}} \mathrm{X}^{\mathrm{m}}$

Differentiating equation (2.15) by X^{h}
yields
(2.16) $\quad\left(\partial \mathrm{g}_{\mathrm{hm}} / \partial \mathrm{x}^{\mathrm{k}}\right) \mathrm{X}^{\mathrm{m}}=\mathrm{g}_{\mathrm{ih}} \mathrm{G}^{\mathrm{i}}{ }_{, \mathrm{k}}+\mathrm{Y}_{\mathrm{i}} \mathrm{G}_{,{ }_{, k h}}^{\mathrm{i}}$,

Inserting equation (2.16) in the
equation (2.14), we obtain
(2.17) $\mathrm{T}^{*}{ }_{\mathrm{j} k}=-\mathrm{g}_{\mathrm{ij}} \mathrm{T}_{\mathrm{k}}^{\mathrm{i}}$.

Since
(2.18) $\mathrm{T}_{\mathrm{jk}}=\mathrm{g}_{\mathrm{ij}} \mathrm{T}_{\mathrm{k}}^{\mathrm{i}}$.

Using equation (3.18) in the equation
(2.17), we get

(2.19) $\mathrm{T}^{*}{ }_{\mathrm{jk}}=-\mathrm{T}_{\mathrm{jk}}$.

Theorem 2.1:

If the coefficients $\Gamma^{2 \mathrm{~h}}{ }_{\mathrm{jk}}$ of a relative connection parameters is symmetric with indices j and k then the tensor T_{jk} is also symmetric with indices j and k .

Proof:

In view of equations (2.13) and (2.19), we obtain
(2.20) $\quad \Gamma^{2}{ }_{\mathrm{jk}}(\mathrm{x}, \mathrm{Y})=-\mathrm{T}_{\mathrm{jk}}(\mathrm{x}, \phi(\mathrm{x}, \mathrm{Y}))$
$\mathrm{G}_{\mathrm{j}, \mathrm{k}}^{\mathrm{i}}(\mathrm{x}, \phi(\mathrm{x}, \mathrm{Y})) \mathrm{Y}_{\mathrm{i}}$,
Interchanging the indices j and k in equation (2.20), we get
(2.21) $\Gamma_{\mathrm{kj}}^{2}(\mathrm{x}, \mathrm{Y}) \quad=$
$\mathrm{T}_{\mathrm{kj}}(\mathrm{x}, \phi(\mathrm{x}, \mathrm{Y}))+\mathrm{G}_{\mathrm{kj}}^{\mathrm{i}}(\mathrm{x}, \phi(\mathrm{x}, \mathrm{Y})) \mathrm{Y}_{\mathrm{i}}$,
Since $\Gamma^{2}{ }_{j k}(x, Y)$ is symmetric with j
and k , then equation (2.21) reduces in the form
(2.22) $\quad \Gamma^{2}{ }_{\mathrm{jk}}(\mathrm{x}, \mathrm{Y})=-\mathrm{T}_{\mathrm{kj}}(\mathrm{x}, \quad \phi(\mathrm{x}, \mathrm{Y}))+\mathrm{G}^{\mathrm{i}}{ }_{\mathrm{jk}}(\mathrm{x}$, $\phi(\mathrm{x}, \mathrm{Y})) \mathrm{Y}_{\mathrm{i}}$,

From equations (2.20) and (2.22), we
obtain
(2.23) $\mathrm{T}_{\mathrm{jk}}=\mathrm{T}_{\mathrm{kj}}$,

Hence, T_{jk} is symmetric with indices j
and k .

III. FLAG CURVATURE IN FINSLER SPACE

If M is an n -dimension C^{∞} space and F is the Finsler metric then we assume that $\mathrm{F}^{\mathrm{n}}(\mathrm{M}, \mathrm{F})$ be a Finsler space. F is assumed to be a C^{∞} function on the slit tangent bundle $\mathrm{TxM}^{\circ}=\mathrm{TxM} \backslash\{0\}$ satisfying the condition:
(a) $\quad \mathrm{F}$ is C^{∞} on TxM^{0}
(b) $\quad \mathrm{F}(\mathrm{x}, \mathrm{ky})=\mathrm{k} \mathrm{F}(\mathrm{x}, \mathrm{y})$, for any $\mathrm{x} \in \mathrm{M}, \mathrm{y} \in \mathrm{T}_{\mathrm{x}} \mathrm{M}$ and $\mathrm{k}>0$
(c) $\mathrm{g}_{\mathrm{ab}}=(1 / 2)\left\{\partial^{2} \mathrm{~F}^{2} / \partial \mathrm{y}^{\mathrm{a}} \partial \mathrm{y}^{\mathrm{b}}\right\}$,
is positive definite at every point (x, y) of $\mathrm{TxM}^{\mathrm{o}}$. It is to be noted that $\left(\mathrm{x}^{\mathrm{a}}, \mathrm{y}^{\mathrm{b}}\right)$ are the coordinates on TxM where (x^{a}) are the coordinates on M . $\left(\partial \square \partial x^{a} \square \partial \square \partial y\right.$) is the local fram field on TxM. Then the Liouville vector field
(3.1) $L=y^{a}\left(\partial \square \partial y^{a}\right)$
is defined as a global section of the vertical vector bundle TxM ${ }^{\circ}$.
Further,
(3.2) $\mathrm{L}=1 \mathrm{~F}$
is a unit vector field,
(3.3) $\mathrm{g}_{\mathrm{ab}} \square \mathfrak{f} \mathrm{l}^{b}=1$,

Wherein
(3.4) $l^{a} F=y^{a}$.

Now, Let us assume a flag $y \Lambda u$ at $x \in M$ determined by y and $u=u^{a}\left(\partial \square \partial x^{3}\right)$. Flag curvature is first used by L. Berwald [3]. The flag curvature for the flag $\mathrm{y} \Lambda \mathrm{u}$ is the number $[2,1]$:
(3.5) $K=\left(R_{a b} u^{a} u^{b}\right) /\left\{\left(g_{a b} u^{a} u^{b}\right)-\left(g_{a b} y^{a} u^{b}\right)^{2}\right\}$.

Flag curvature K must be constant when the flag curvature K depends neither on y^{a} nor on u^{a}. Also it is well known that F^{n} has constant flag curvature K iff
(3.6) $\mathrm{R}_{\mathrm{ab}}=\mathrm{K} \mathrm{h}_{\mathrm{ab}}$,

Wherein $h_{a b}$ are the components of the angular metric on F^{n} defined by
(3.7) $h_{a b}=g_{a b}-l_{a} l_{b}$.

The Riemannian curvature tensor of Berwald connection is defined as
(3.8) $\quad \mathrm{K}_{\mathrm{bcd}}^{\mathrm{a}}=\lambda_{\mathrm{c}} \mathrm{G}^{\mathrm{a}}{ }_{\mathrm{bd}}+\mathrm{G}_{\mathrm{bd}}^{\mathrm{e}} \mathrm{G}_{\mathrm{ec}}^{\mathrm{a}}-\lambda_{\mathrm{d}} \mathrm{G}_{\mathrm{bc}}^{\mathrm{a}}+$ $\mathrm{G}_{\mathrm{bc}}^{\mathrm{e}} \mathrm{G}_{\mathrm{ed}}^{\mathrm{a}}$.
If we take
(3.9) $\quad \mathrm{K}^{\mathrm{a}}{ }_{\mathrm{bc}}=\mathrm{K}^{\mathrm{a}}{ }_{0 b c}$
and
(3.10) $\quad \mathrm{K}_{\mathrm{b}}^{\mathrm{a}}=\mathrm{K}_{0 \mathrm{~b}}^{\mathrm{a}}$,

Consequently, yields
(3.11) $\mathrm{K}_{\mathrm{bc}}^{\mathrm{a}}=(1 / 3)\left(\dot{\partial}_{\mathrm{b}} \mathrm{K}_{\mathrm{c}}^{\mathrm{a}}-\dot{\partial}_{\mathrm{c}} \mathrm{K}_{\mathrm{b}}^{\mathrm{a}}\right)$.

The projective Weyl curvature is expressed as follows [7,8]:
(3.12) $\quad \mathrm{W}^{\mathrm{a}}{ }_{\mathrm{bcd}}=\mathrm{K}^{\mathrm{a}}{ }_{\mathrm{bcd}}+\left\{1 /\left(\mathrm{n}^{2}-1\right)\right\}\left\{\delta^{\mathrm{a}}{ }_{\mathrm{b}}\left(\dot{\mathrm{K}}_{\mathrm{dc}}-\dot{\mathrm{K}}_{\mathrm{cd}}\right)\right.$
$+\delta^{\mathrm{a}}{ }_{\mathrm{d}} \dot{\mathrm{K}}_{\mathrm{bc}}{ }^{-} \delta^{\mathrm{a}}{ }_{\mathrm{c}} \dot{\mathrm{K}}_{\mathrm{bd}}+\mathrm{F} \mathrm{l}^{\mathrm{a}} \dot{\partial}_{\mathrm{b}}\left(\dot{\mathrm{K}}_{\mathrm{dc}}{ }^{-} \dot{\mathrm{K}}_{\mathrm{cd}}\right)$,
Wherein
(3.13) $\quad \dot{\mathrm{K}}_{\mathrm{ab}}=\mathrm{nK} \mathrm{K}_{\mathrm{ab}}+\mathrm{K}_{\mathrm{ba}}+\mathrm{Fl}^{\mathrm{e}} \dot{\partial}_{\mathrm{a}} \mathrm{K}_{\mathrm{be}}$.

It is noteworthy that a Finsler metric is one of scalar flag curvature iff
(3.14) $\quad W^{a}{ }_{b c d}=0$.

Let us consider a mapping $\phi: \mathrm{F}^{\mathrm{n}} \rightarrow \mathrm{F}^{\mathrm{n}}$ and ϕ be diffeomorphism. Then ϕ is said to be a projective mapping if there exists a positive homogeneous scalar function P of degree one satisfying the relation

$$
\text { (3.15) } \quad \mathrm{G}^{\mathrm{a}}=\mathrm{G}^{\mathrm{a}}+\mathrm{FP} \mathrm{l}^{\mathrm{a}}
$$

Wherein P is the projective factor [9].
Under a projective transformation with projective factor P, the Riemannian curvature tensor of Berwald connection change is given by the following expression
(3.16) $\check{\mathrm{K}}^{\mathrm{a}}{ }_{\mathrm{bcd}}=\mathrm{K}^{\mathrm{a}}{ }_{\mathrm{bcd}}+\mathrm{Fl}^{\mathrm{a}} \partial_{\mathrm{b}} \mathrm{Q}_{\mathrm{cd}}+\delta^{\mathrm{a}}{ }_{\mathrm{b}} \mathrm{Q}_{\mathrm{cd}}+\delta^{\mathrm{a}}{ }_{\mathrm{c}} \partial_{\mathrm{b}} \mathrm{Q}_{\mathrm{d}}$ $-\delta_{d}^{\mathrm{a}} \dot{\partial}_{\mathrm{b}} \mathrm{Q}_{\mathrm{c}}$,

Wherein
(3.17) $\mathrm{Q}_{\mathrm{a}}=\lambda_{\mathrm{a}} \mathrm{P}-\mathrm{PP}_{\mathrm{a}}$
and
(3.18) $\mathrm{Q}_{\mathrm{ab}}=\dot{\partial}_{\mathrm{a}} \mathrm{Q}_{\mathrm{b}}-\dot{\partial}_{\mathrm{b}} \mathrm{Q}_{\mathrm{a}}$.

It is noted that if $\mathrm{Q}_{\mathrm{ab}}=0$ then a projective transformation with projective factor P is said to be C-projective.
(3.19) $£_{\mathrm{X}} \mathrm{G}_{\mathrm{bcd}}^{\mathrm{a}}=\delta^{\mathrm{a}}{ }_{\mathrm{b}} \mathrm{P}_{\mathrm{cd}}+\delta^{\mathrm{a}}{ }_{\mathrm{c}} \mathrm{P}_{\mathrm{bd}}+\delta^{\mathrm{a}}{ }_{\mathrm{d}} \mathrm{P}_{\mathrm{cb}}+\mathrm{Fl}^{\mathrm{a}} \mathrm{P}_{\mathrm{bcd}}$ and
(3.20) $\sum_{X} \mathrm{~K}^{\mathrm{a}}{ }_{\mathrm{bcd}}=\delta^{\mathrm{a}}{ }_{\mathrm{b}}\left(\mathrm{P}_{\mathrm{d}!\mathrm{c}}-\mathrm{P}_{\mathrm{c}!\mathrm{d}}\right)+\delta_{\mathrm{d}}^{\mathrm{a}} \mathrm{P}_{\mathrm{b}!\mathrm{c}}-\delta^{\mathrm{a}}{ }_{\mathrm{c}} \mathrm{P}_{\mathrm{b}!\mathrm{d}}$ $+\mathrm{Fl}^{\mathrm{a}} \dot{\partial}_{\mathrm{b}}\left(\mathrm{P}_{\mathrm{d}!\mathrm{c}}-\mathrm{P}_{\mathrm{c}!\mathrm{d}}\right)$.

Since
(3.21) $\mathrm{Q}_{\mathrm{bc}}=\mathrm{P}_{\mathrm{b}!\mathrm{c}}-\mathrm{P}_{\mathrm{c}!\mathrm{b}}$,

We have [5,7]:
(3.22) $\quad \dot{\partial}_{\mathrm{a}} \mathrm{P}_{\mathrm{b}!c}=\mathrm{P}_{\mathrm{ab}!\mathrm{c}}-\mathrm{P}_{\mathrm{e}} \mathrm{G}_{\mathrm{abc}}^{\mathrm{e}}$,

Contracting a and c in (3.21), yield
$£_{\mathrm{X}} \mathrm{K}_{\mathrm{bd}}=\mathrm{P}_{\mathrm{d}!\mathrm{b}}-\mathrm{nP}_{\mathrm{b}!\mathrm{d}}+\mathrm{F} \mathrm{P}_{\mathrm{bd}!\mathrm{h}^{\mathrm{h}}}{ }^{\mathrm{h}}$,
Hence, obtain
(3.24) $£_{\mathrm{X}}\left(\mathrm{Fl}^{\mathrm{e}} \dot{\partial}_{\mathrm{d}} \mathrm{K}_{\text {be }}\right)=-(\mathrm{n}-1) \mathrm{F} \mathrm{P}_{\mathrm{bd}!\mathrm{h}} \mathrm{l}^{\mathrm{h}}$,

Consequently yields
(3.25) $£_{\mathrm{X}}\left(\mathrm{K}_{\mathrm{bd}}+\{1 /(\mathrm{n}+1)\} \mathrm{Fl}^{\mathrm{e}} \dot{\partial}_{\mathrm{d}} \mathrm{K}_{\mathrm{be}}\right)=\mathrm{P}_{\mathrm{d}!\mathrm{b}}-\mathrm{nP}_{\mathrm{b}!\mathrm{d}}$ and
(3.26) $£_{\mathrm{X}}\left(\mathrm{K}_{\mathrm{db}}+\{1 /(\mathrm{n}+1)\} \mathrm{Fl}^{\mathrm{e}} \dot{\partial}_{\mathrm{b}} \mathrm{K}_{\mathrm{de}}\right)=\mathrm{P}_{\mathrm{b}!\mathrm{d}}-$ $\mathrm{nP}_{\mathrm{d}!\mathrm{b}}$,

As a consequence of equations (3.25) and (3.26), we get
(3.27) $\quad \mathrm{P}_{\mathrm{b}!\mathrm{d}}=\left\{1 /\left(1-\mathrm{n}^{2}\right)\right\} £_{\mathrm{X}}\left[\mathrm{K}_{\mathrm{db}}+\{1 /(\mathrm{n}+1)\} \mathrm{Fl}^{\mathrm{e}}\right.$ $\left.\dot{\partial}_{\mathrm{b}} \mathrm{K}_{\mathrm{de}}+\mathrm{nK} \mathrm{K}_{\mathrm{bd}}+\{\mathrm{n} /(\mathrm{n}+1)\} \mathrm{Fl}^{\mathrm{e}} \dot{\partial}_{\mathrm{d}} \mathrm{K}_{\mathrm{be}}\right]$.

If $\mathrm{Q}_{\mathrm{ab}}=0$, the equation (3.20) reduces to
(3.28) $£_{\mathrm{X}} \mathrm{K}_{\mathrm{bcd}}^{\mathrm{a}}=\delta^{\mathrm{a}}{ }_{\mathrm{d}} \mathrm{P}_{\mathrm{b}!\mathrm{c}}-\delta^{\mathrm{a}}{ }_{\mathrm{c}} \mathrm{P}_{\mathrm{b}!\mathrm{d}}$,

By virtue of equations (3.27) and (3.28), we obtain new type of tensor
(3.29) $\quad \dot{\mathrm{W}}^{\mathrm{a}}{ }_{\mathrm{bcd}} \quad=\mathrm{K}^{\mathrm{a}}{ }_{\mathrm{bcd}} \quad-\quad\left\{1 / 1-\mathrm{n}^{2}\right\}\left[\delta^{\mathrm{a}}{ }_{\mathrm{d}} \quad\left\{\dot{\mathrm{K}}_{\mathrm{bc}}\right.\right.$ $\left.+\{\mathrm{n} /(\mathrm{n}+1)\} \quad \mathrm{Fl}^{\mathrm{e}}\left(\dot{\partial}_{\mathrm{c}} \mathrm{K}_{\mathrm{be}} \quad \dot{\partial}_{\mathrm{b}} \mathrm{K}_{\mathrm{ce}}\right)\right\} \quad+\quad \delta^{\mathrm{a}}\left\{\dot{\mathrm{K}}_{\mathrm{bd}} \quad+\right.$ $\left.\left.\{\mathrm{n} /(\mathrm{n}+1)\} \mathrm{Fl}^{\mathrm{e}}\left(\dot{\partial}_{\mathrm{d}} \mathrm{K}_{\mathrm{be}}-\dot{\partial}_{\mathrm{b}} \mathrm{K}_{\mathrm{de}}\right)\right\}\right]$,

As a consequence of
(3.30) $\quad 1^{\mathrm{a}} \mathrm{l}^{\mathrm{e}} \dot{\partial}_{\mathrm{b}} \mathrm{K}_{\mathrm{ae}}=0$
and
(3.31) $\quad \dot{\mathrm{W}}^{\mathrm{a}}{ }_{\mathrm{c}}=\dot{\mathrm{W}}^{\mathrm{a}}{ }_{\mathrm{bcd}}{ }^{\mathrm{b}} \mathrm{l}^{\mathrm{d}}$.

We obtain
(3.32) $\quad \dot{\mathrm{W}}^{\mathrm{a}}{ }_{\mathrm{c}}=\mathrm{K}^{\mathrm{a}}{ }_{\mathrm{c}}-\left\{1 /\left(1-\mathrm{n}^{2}\right)\right\}\left[\mathrm{Fl}^{\mathrm{a}} \dot{\mathrm{K}}_{0 \mathrm{c}}-\delta_{\mathrm{c}}^{\mathrm{a}} \dot{\mathrm{K}}_{00}\right]$.

The tensor K is called C-projective Weyl curvature. If C-projective Weyl-curvature is vanish then a Finsler metric F is called C-projective Weyl metric.

In view of above discussions, we have the following theorems:

Theorem 3.1:

Let F be a C-projective Weyl metric. Then prove that F is a Weyl metric.

Proof:

Let us assume that
(3.33) $\mathrm{K}^{\mathrm{a}}{ }_{\mathrm{c}}-\left\{1 /\left(1-\mathrm{n}^{2}\right)\right\}\left[\mathrm{Fl}^{\mathrm{a}} \dot{\mathrm{K}}_{0 \mathrm{c}}-\delta^{\mathrm{a}}{ }_{\mathrm{c}} \dot{\mathrm{K}}_{00}\right]=0$,

Contracting (3.33) by la yields
(3.34) $\quad \mathrm{F}^{3} \dot{\mathrm{~K}}_{0 \mathrm{c}}-\mathrm{l}_{\mathrm{c}} \dot{\mathrm{K}}_{00}=0$,

Consequently,
(3.35) $\quad \dot{\mathrm{K}}_{0 \mathrm{c}}=\mathrm{F}^{-3} \mathrm{l}_{\mathrm{c}} \dot{\mathrm{K}}_{00}$,

By virtue of equations (3.33) and (3.35), we obtain
(3.36) $\quad \mathrm{K}_{\mathrm{c}}^{\mathrm{a}}=\left\{1 /\left(1-\mathrm{n}^{2}\right)\right\} \mathrm{h}_{\mathrm{c}}^{\mathrm{a}} \dot{\mathrm{K}}_{00}$,

Consequently F is said to be scalar flag curvature. Therefore F is a Weyl metric.

Theorem 3.2:

Let F be a Finsler metric of scalar flag curvature κ. Then C-projective Weyl curvature is defined as $\dot{\mathrm{W}}^{\mathrm{a}}{ }_{\mathrm{c}}=(1 / 3) \mathrm{F}^{3} \mathrm{l}^{\mathrm{a}} \kappa_{\mathrm{c}}$, wherein $\kappa_{\mathrm{c}}=\dot{\partial}_{\mathrm{c}} \kappa$.

Proof:

The Riemannian curvature of Berwald connection is given by[3]:

$$
\begin{aligned}
& \text { (3.37) } \quad \mathrm{K}_{\mathrm{bcd}}^{\mathrm{a}}=\kappa\left(\delta^{\mathrm{a}}{ }_{\mathrm{c}} \mathrm{~g}_{\mathrm{bd}}-\delta_{\mathrm{d}}^{\mathrm{a}} \mathrm{~g}_{\mathrm{bc}}\right)+\kappa_{\mathrm{b}} \mathrm{~F}\left(\delta_{\mathrm{c}}^{\mathrm{a}} \mathrm{~F}_{\mathrm{d}}-\right. \\
& \delta^{\mathrm{a}}{ }_{\mathrm{d}} \mathrm{~F}_{\mathrm{c}} \text {) } \\
& +(1 / 3)\left[\mathrm{F}^{2}\left(\mathrm{~h}^{\mathrm{a}}{ }_{\mathrm{c}} \kappa_{\mathrm{bd}}-\mathrm{h}_{\mathrm{d}}^{\mathrm{a}} \kappa_{\mathrm{bc}}\right)+\mathrm{K}_{\mathrm{d}} \mathrm{~F}\left(2 \delta^{\mathrm{a}}{ }_{\mathrm{c}} \mathrm{~F}_{\mathrm{b}}-2 \delta^{\mathrm{a}}{ }_{\mathrm{b}} \mathrm{~F}_{\mathrm{c}}\right.\right. \\
& \left.-g_{b c}{ }^{\mathrm{a}}\right)+\kappa_{\mathrm{c}} \mathrm{~F}\left(2 \delta^{\mathrm{a}}{ }_{\mathrm{d}} \mathrm{~F}_{\mathrm{b}}-2 \delta^{\mathrm{a}}{ }_{\mathrm{b}} \mathrm{~F}_{\mathrm{d}}-\mathrm{g}_{\mathrm{bd}} \mathrm{l}^{\mathrm{a}}\right) \text {, } \\
& \text { Wherein } \\
& \text { (3.38) } \kappa_{\mathrm{bc}}=\dot{\partial}_{\mathrm{c}} \kappa_{\mathrm{b}} \text {. } \\
& \text { Consequently yields } \\
& \text { (3.39) } \quad \mathrm{K}_{\mathrm{b}}^{\mathrm{a}}=\kappa \mathrm{F}^{2} \mathrm{~h}^{\mathrm{a}}{ }_{\mathrm{b}} \text {, } \\
& \text { As a consequence, we obtain [9]: } \\
& \text { (3.40) } \quad \mathrm{K}_{\mathrm{bd}}=(\mathrm{n}-1)\left(\mathrm{Kg}_{\mathrm{bd}}+\mathrm{FF}_{\mathrm{d}} \mathrm{~K}_{\mathrm{b}}\right)+(1 / 3)(\mathrm{n}- \\
& \text { 2) }\left(\mathrm{F}^{2} \kappa_{\mathrm{bd}}\right. \\
& \left.+2 \mathrm{FF}_{\mathrm{b}} \mathrm{~K}_{\mathrm{d}}\right) \text {, } \\
& \text { (3.41) } \quad \dot{\mathrm{K}}_{00}=\left(\mathrm{n}^{2}-1\right) \kappa \mathrm{F}^{2} \text {, } \\
& \text { (3.42) } \quad \mathrm{K}_{0 \mathrm{c}}=(\mathrm{n}-1) \kappa \mathrm{FF}_{\mathrm{c}}+(1 / 3)(\mathrm{n}-2) \mathrm{F}^{2} \kappa_{\mathrm{c}} \\
& \text { (3.43) } \quad \dot{\mathrm{K}}_{0 \mathrm{c}}=\left(\mathrm{n}^{2}-1\right)\left(\kappa \mathrm{FF}_{\mathrm{c}}+(1 / 3) \mathrm{F}^{2} \kappa_{\mathrm{c}}\right. \text {, } \\
& \text { By virtue of equations (3.32), (3.39), } \\
& \text { (3.41) and (3.43), we obtain } \\
& \text { (3.44) } \quad \dot{W}^{\mathrm{a}}{ }_{\mathrm{c}}=(1 / 3) \mathrm{F}^{3} \mathrm{l}^{\mathrm{a}} \kappa_{\mathrm{c}} \text {. }
\end{aligned}
$$

Theorem 3.3:

If F is a Finsler metric of constant flag curvature with $\mathrm{K}=\kappa$. Then F is C-projective Weyl metric.

Proof:

If F is of constant flag curvature κ then equation (3.37) reduces in the form
(3.45) $\quad \mathrm{K}^{\mathrm{a}}{ }_{\mathrm{bcd}}=\kappa\left(\delta^{\mathrm{a}}{ }_{\mathrm{c}} \mathrm{g}_{\mathrm{bd}}-\delta_{\mathrm{d}}^{\mathrm{a}} \mathrm{g}_{\mathrm{bc}}\right)$,

Yields
(3.46) $K_{b d}=-(n-1) \mathrm{Kg}_{b d}$,
and
(3.47) $\dot{K}_{b d}=-\left(n^{2}-1\right) g_{b d}$,

By virtue of equations (3.29), (3.46) and (3.47) yields
(3.48) $\quad \dot{\mathrm{W}}_{\text {bcd }}^{\mathrm{a}}=0$,

Consequently yields
(3.49) $\quad \dot{W}^{\mathrm{a}}{ }_{\mathrm{c}}=0$.

In Finsler metric F of scalar flag curvature with dimension $n \geq 3$, we have a projective transformation with the projective factor P , we have the following conditions:
(3.50) $\quad \dot{\mathrm{S}}_{\mathrm{ab}}=\mathrm{S}_{\mathrm{ab}}+\{(\mathrm{n}+1) / 2\} \mathrm{P}_{\mathrm{ab}}$,
and
(3.51) $\quad \dot{\mathrm{S}}_{\mathrm{eb}} \dot{\mathrm{G}}_{\mathrm{a}}^{\mathrm{e}}=\mathrm{S}_{\mathrm{eb}} \mathrm{G}_{\mathrm{a}}^{\mathrm{e}}+\mathrm{PS}_{\mathrm{ab}}+\{(\mathrm{n}+1) / 2\}\left(\mathrm{P}_{\mathrm{eb}} \mathrm{G}_{\mathrm{a}}^{\mathrm{e}}\right.$ $+\mathrm{PP}_{\mathrm{ab}}$).

In view of above discussion, we have the following:
(3.53) $\quad \tau_{\mathrm{ab}}=\tau_{\mathrm{ab}}+\{(\mathrm{n}+1) / 2\}\left(\mathrm{Fl}^{\mathrm{e}} \lambda_{\mathrm{e}} \mathrm{P}_{\mathrm{ab}}-\mathrm{P}_{\mathrm{eb}} \mathrm{G}_{\mathrm{a}}^{\mathrm{e}} \quad-\right.$ $\mathrm{P}_{\mathrm{ae}} \mathrm{G}_{\mathrm{b}}^{\mathrm{e}}$),

Consequently follows
(3.54) $\quad \mathrm{Fl}^{\mathrm{e}} \dot{\partial}_{\mathrm{a}} \mathrm{Q}_{\mathrm{bc}}=\mathrm{Fl}^{\mathrm{e}} \lambda_{\mathrm{e}} \mathrm{P}_{\mathrm{ab}}-\mathrm{P}_{\mathrm{eb}} \mathrm{G}_{\mathrm{a}}^{\mathrm{e}}-\mathrm{P}_{\mathrm{ea}} \mathrm{G}^{\mathrm{e}}{ }_{\mathrm{b}}$, From equations (3.53) and (3.54), we get
(3.55) $\quad \dot{\tau}_{\mathrm{ab}}=\tau_{\mathrm{ab}}+\{(\mathrm{n}+1) / 2\} \mathrm{Fl}^{\mathrm{e}} \dot{\partial}_{\mathrm{a}} \mathrm{Q}_{\mathrm{be}}$, If we take C -projective mapping i.e. $\mathrm{Q}_{\mathrm{ab}}=$ 0 . Follows
(3.55) $\quad \dot{\tau}_{a b}=\tau_{a b}$.

Hence, τ-curvature is C-projective invariant.

REFERENCES

[1]. Bacso, S. and Papp, I. (2004), "A note on generalized Douglas space." Periodica Mathematicia Hungarica, 48 (1-2), 181-184.
[2]. Bao, D., Chem, S.S. and Shen, Z. (2000), "An introduction to Riemann-Finsler geometry." Graduate Text in Math, Springer, Berlin, 200.
[3]. Berwald,L.(1926),"UberParallelubertragung in Raumenmit allgemeiner Massbestimmung, Jber. Deutsch. Math-Verein. 34, 213-220.
[4]. Kawaguchi, A. (1956), "On the theory of non-linear connections II, Theory of Minkowski space." Tensor, N.S., 6, 165199.
[5]. Najafi, B., Shen, Z. and Tayebi, A. (2008), "Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties." Geom. Dedicata, 131, 87-97.
[6]. Schouten, J.A. and Struik, D.J. (1938), "Einfuhruing in die neueren Methoden der Differential geometric." P.Noordhoff N.V.
[7]. Shen, Z. (2001), "Differential Geometry of Spray and Finsler Spaces." Kluwer Academic Publishers, Dordrecht.
[8]. Shen, Z. (2003), "Projectively flat Finsler metrics of constant flag curvature." Transactions of the American Mathematical Society, 355, 4, 1713-1728.
[9]. Singh, S.P. (2010), "Projective motion in bi - recurrent Finsler space." Diff. Geom. Dyn. Syst. 12, 221-227.

Theorem 3.4:

τ-curvature is C -projective invariant.

Proof:

For a projective transformation, we have
(3.52) $\dot{\tau}_{\mathrm{ab}}=\mathrm{F} \dot{S}_{\mathrm{abc}}{ }^{\mathrm{c}}$,

By virtue of equations (3.50), (3.51) and
(3.52) yields

