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ABSTRACT: This  paper  has   been   devoted  to  

the   study   of   Finsler  space  with  flag  

curvature. Section 1 is  devoted  to   the  study  of   

theory   of  indicatrix.  Section 2 delineates  to  the  

metric  non-linear  connections. Section 3 is  

devoted  to  the  study of  flag curvature in  Finsler  

space. 
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I. INTRODUCTION 
Let  M

n 
be a  Minkowski  space  with  the 

indicatrix F(X
i
) = 1,  wherein  X

i
(i = 1, 2, 3, - - - - , 

n)  may  be regarded  as  components  of  a  vector. 

The   indicatrix  F(X
i
) = 1  is  given  by  X

i
 = X

i
(u

α
)  

with  n-1  parameters  u
α
(α= 1, 2, 3,- - - -,n-1) that  

is  to   say,   we   shall  regard   the  indicatrix  as  

an (n-1)-dimensional  manifold  I
n-1  

with  

coordinate  system (u
α
).  The  indicatrix  is  given  

by [4]: 

(1.1) F
2
(X) = gij(X) X

i
X

j
 = 1, 

If the Minkowski space M
n 

be a   Riemannian  

space  with  the  metric  tensor  given  by  gij(X),  

then  the  induced  metric  tensor gαβ(u)  on  the  

indicatrix I
n-1 

is  given  by [4]: 

(1.2) gαβ = gαβ(u) = gij
 
X

i
αX

j
β    

 Wherein 

(1.3) X
i
α = (X

i
/u

α
). 

Differentiating  equation (1.1) by u
α 

and  using 

equation (1.3),  we  get 

(1.4) gij
 
X

i
αX

j
  = 0    

 This   equation   shows   that   the   vector   

X
i 
is  normal  unit  vector  of  I

n-1
. 

 The   covariant   derivative  of   X
i
α and  

using D-symbol,  we  get [6]: 

(1.5) Dα


X
i
β = H

i
αβ, 

(1.6) Dα X
j
β = hαβX

i
  

and 

(1.7) DαX
i
β=αX

i
β+{j

i
k}X

j
αX

k
β -{α

γ
β}X

i
γ. 

 Differentiating   equation   (1.4)   

covariantly   and   using    D-symbol,  we  obtain 

(1.8) gijX
i
αX

j
β + gij (DβX

i
α)X

j
 = 0 

and 

(1.9) gαβ + hαβ = 0. 

 By  virtue  of  equations  (1.2)  and  (1.8)  

yields 

(1.10) gαβ + gij(DβX
i
α)X

j
 = 0 

 From  equations  (1.6)  and  (1.10),  we  

get 

(1.11) gαβ + gij hβαX
i
X

j
 = 0, 

 In  view  of  equations  (1.1)  and  (1.11),  

we  obtain 

(1.12) gαβ + hβα = 0, 

 Comparing  equations  (1.9)  and  (1.12)  

yields 

(1.13) hαβ = hβα, 

 Hence,  hαβ  is  symmetric  tensor  of  I
n-1

. 

 In  view  of  equations  (1.2)  and  (1.9),  

we  obtain 

(1.14) hαβ = - gijX
i
αX

j
β  

 Contracting  equation  (1.9)  with  g
αγ

,  we  

obtain 

(1.15) g
αγ

hαβ = - 
γ
β 

 Contracting  equation  (1.9)  with  g
αβ

  

yields 

(1.16) g
αγ

hαβ = -(n-1). 

 

II. METRIC NON-LINEAR 

CONNECTIONS 
Consider  a  differentiable  vector  field  X

i
 in  a  

Finsler space  F
n
,  and  there  is  given  a  set  of   

functions Γ
1i

k(x,X) depending on  this  field,   

wherein  Γ
1i

k(x,X)   are   homogeneous  of   degree  

one  in  the  X
i
.  Then  absolute  differential  is  

defined  as 

(2.1) δX
i
 = dX

i
 + Γ

1i
k(x,X)dx

k
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Next,  consider  a   covariant   vector   field  Yi in  

the   Finsler space F
n
.  Then  the  absolute  

differential  of  Yi
 
is  defined  as 

(2.2) Yi
 
= dYi - Γ

2
ik(x,Y)dx

k 

 Wherein  Γ
2

ik(x,Y)  is  homogeneous  of  

degree  one  in  Yi. 

 Let  us  consider  a  relation  between  X
i  

and  Yi
  

is 

(2.3) Yi = gijX
j
, 

 Contracting  equation  (2.3)  by  X
i  

and   

using  equation  (1.1), we  get 

(2.4) X
i 
Yi = 1, 

 The  absolute   differential  δYi   coincides  

with  the  covariant  component  of  δX
i
,  i.e. 

(2.5) δYi
 
= gij

 
δX

j
 

 Consequently  yields 

(2.6) Γ
2
ik(x,Y) = (∂gij/x

k
)X

j
 - gij Γ

1i
k(x,X). 

 Next,   we  shall  find  out  another  form  

of  the coefficients Γ
1i

k and Γ
2
jk. The  following  

equation  in  F(x,X)  is 

(2.7) F,k = (∂F/x
k
) - (∂F/X

j
)G

j
,k(x,X) = 0 

Wherein 

(2.8) G
j
,k(x,X) = (∂G

j
/∂X

k
)  

and 

(2.9) G
i
(x,X) = (1/2){h

i
k}X

h
X

k
. 

 From  equations  (2.1)  and  (2.7),  we  

have 

(2.10) Γ
1i

k(x,X) = T
i
k(x,X) + G

i
k(x,X), 

 Wherein   T
i
k(x,X)    is  an  arbitrary   

tensor   homogeneous   of  degree  one  in  X
i 

which  satisfies  the  relations 

(2.11) gij
 
X

i
 T

j
k = 0  

and 

(2.12) B
i
j T

j
k = T

i
k. 

 Therefore,  we  take 

(2.13) Γ
2
jk(x,Y) = T*jk(x,Y) + G

i
,jk(x,ϕ(x,Y))Yi, 

 Wherein T*jk is an arbitrary tensor  

homogeneous  of  degree one  in  Yi
 
which  is  

restricted  by  the  relation  T*jk X
j
 = 0. 

 In view of  equations  (2.10)  and  (2.13),  

the  equation  (2.6) assumes  the  form 

(2.14) T*jk(x,Y)=-gijT
i
k+{(∂gij/∂x

k
)X

i
-gijG

i
k-

G
i
,jkYi} 

But 

(2.15) gijG
i
,k X

j 
= (1/2)(∂gjm/∂x

k
)X

j
 X

m
  

 = gijX
j
 ({m

i
k}X

m
 -{m

l
n}C

i
klX

m 
X

n
), 

 Differentiating  equation  (2.15)  by  X
h  

yields 

(2.16) (∂ghm/∂x
k
)X

m
 = gihG

i
,k + YiG

i
,kh, 

 Inserting  equation  (2.16)  in  the  

equation  (2.14),  we  obtain 

(2.17) T*jk = - gij T
i
k. 

 Since 

(2.18) Tjk = gijT
i
k. 

 Using  equation  (3.18)  in  the  equation  

(2.17),  we  get 

(2.19) T*jk = - Tjk. 

Theorem 2.1:
 

 If the coefficients Γ
2h

jk of a relative 

connection  parameters  is  symmetric   with  

indices  j  and  k  then   the   tensor   Tjk
 
 is  also  

symmetric  with  indices  j  and  k. 

Proof: 

 In  view  of  equations  (2.13)  and  (2.19),  

we  obtain 

(2.20) Γ
2
jk(x,Y)=-Tjk(x,ϕ(x,Y)) + 

G
i
,jk(x,ϕ(x,Y))Yi, 

 Interchanging  the  indices  j  and  k  in 

equation  (2.20), we get 

(2.21) Γ
2
kj(x,Y) = -

Tkj(x,ϕ(x,Y))+G
i
,kj(x,ϕ(x,Y))Yi, 

 Since Γ
2
jk(x,Y) is  symmetric   with  j  

and  k,   then  equation (2.21)  reduces  in  the  

form 

(2.22) Γ
2
jk(x,Y) = -Tkj(x, ϕ(x,Y))+G

i
,jk(x, 

ϕ(x,Y))Yi, 

 From  equations  (2.20)  and  (2.22),  we  

obtain 

(2.23) Tjk = Tkj, 

 Hence,  Tjk
  

is  symmetric  with  indices  j  

and  k. 

 

III. FLAG CURVATURE IN  FINSLER 

SPACE 
If M is an n-dimension C

∞
 space and F is the 

Finsler metric then we assume that F
n
(M,F) be a 

Finsler space. F is assumed to be a C
∞
 function on 

the slit tangent bundle TxM
o
 = TxM\{0} satisfying 

the condition: 

(a) F is C
∞ 

on TxM
o
 

(b) F(x,ky) = k F(x,y), for any xϵM,yϵTxM 

and k>0 

(c) gab
 
= (1/2){∂

2
F

2
/∂y

a
∂y

b
}, 

is positive definite at every point (x,y) of TxM
o
. It 

is to be noted that (x
a
,y

b
) are the coordinates on 

TxM where (x
a
) are the coordinates on M. 

(∂∂x
a
∂∂y

b
) is the local fram field on TxM. 

Then the Liouville vector field  

(3.1) L = y
a
(∂∂y

a
) 

is defined as a global section of the vertical vector 

bundle TxM
o
. 

Further, 

(3.2) L = l F  

is a unit vector field, 

(3.3) gabl
a
 l

b
 = 1, 

Wherein 

(3.4) l
a
 F = y

a
. 

Now, Let us assume a flag yɅu at xϵM determined 

by y and u= u
a
(∂∂x

a
). Flag curvature is first used 

by L. Berwald [3]. The flag curvature for the flag 

yɅu is the number[2,1]: 

(3.5) K = (Rabu
a
u

b
)/{(gabu

a
u

b
) - (gaby

a
u

b
)
 2
}. 
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 Flag curvature K must be constant when 

the flag curvature K depends neither on y
a 

nor on 

u
a
. Also it is well known that F

n
 has constant flag 

curvature K iff 

(3.6) Rab
 
= K hab, 

Wherein hab are the components of the angular 

metric on F
n
 defined by 

(3.7) hab
 
= gab - lalb. 

 The Riemannian curvature tensor of 

Berwald connection is defined as 

(3.8) K
a
bcd = λcG

a
bd + G

e
bdG

a
ec - λdG

a
bc + 

G
e
bcG

a
ed. 

 If we take 

(3.9) K
a
bc = K

a
0bc 

and 

(3.10) K
a
b

 
= K

a
0b, 

 Consequently, yields 

(3.11) K
a
bc = (1/3)(∂ bK

a
c

 
- ∂ cK

a
b). 

 The projective Weyl curvature is 

expressed as follows [7,8]: 

(3.12) W
a
bcd = K

a
bcd + {1/(n

2
-1)}{δ

a
b(K dc- K cd)  

+ δ
a
dK bc 

-
 δ

a
cK bd+ F l

a
 ∂ b(K dc 

-
 K cd), 

 Wherein 

(3.13) K ab= nKab + Kba + F l
e
 ∂ aKbe. 

 It is noteworthy that a Finsler metric is 

one of scalar flag curvature iff 

(3.14) W
a
bcd = 0. 

Let us consider a mapping ϕ : F
n
 → F

n
 and ϕ be 

diffeomorphism. Then ϕ is said to be a projective 

mapping if there exists a positive homogeneous 

scalar function P of degree one satisfying the 

relation 

(3.15) G
a
 = G

a 
+ FP l

a
, 

Wherein P is the projective factor [9]. 

Under a projective transformation with projective 

factor P, the Riemannian curvature tensor of 

Berwald connection change is given by the 

following expression 

(3.16) Ǩ
a
bcd = K

a
bcd + Fl

a 
∂bQcd + δ

a
bQcd + δ

a
c ∂bQd  

– δ
a
d∂ bQc, 

 Wherein 

(3.17) Qa = λa P – PPa 

and 

(3.18) Qab = ∂ aQb – ∂ bQa. 

 It is noted that if Qab = 0 then a projective 

transformation with projective factor P is said to be 

C-projective. 

(3.19) ₤XG
a
bcd = δ

a
bPcd + δ

a
cPbd + δ

a
dPcb + Fl

a

 
Pbcd 

and 

(3.20) ₤XK
a
bcd = δ

a
b(Pd!c - Pc!d) + δ

a
d Pb!c – δ

a
c
 
Pb!d  

+ Fl
a

 
∂ b(Pd!c - Pc!d). 

 Since 

(3.21) Qbc = Pb!c - Pc!b, 

 We have [5,7]: 

(3.22) ∂ aPb!c = Pab!c - PeG
e
abc, 

 Contracting a and c in (3.21), yield 

(3.23) ₤XKbd = Pd!b - nPb!d + F Pbd!hl
h
, 

 Hence, obtain 

(3.24) ₤X(Fl
e ∂ dKbe) = - (n-1)F Pbd!h l

h
, 

 Consequently yields 

(3.25) ₤X(Kbd + {1/(n+1)}Fl
e ∂ dKbe) = Pd!b

 
- nPb!d 

and 

(3.26) ₤X(Kdb + {1/(n+1)}Fl
e ∂ bKde) = Pb!d

 
– 

nPd!b, 

 As a consequence of equations (3.25) and 

(3.26), we get 

(3.27) Pb!d = {1/(1-n
2
)}₤X[Kdb + {1/(n+1)}Fl

e 

∂ bKde + nKbd
 
+ {n/(n+1)}Fl

e ∂ dKbe]. 

 If Qab = 0, the equation (3.20) reduces to 

(3.28) ₤XK
a
bcd = δ

a
d Pb!c - δ

a
c Pb!d, 

 By virtue of equations (3.27) and (3.28), 

we obtain new type of tensor 

(3.29) W a
bcd =K

a
bcd - {1/1-n

2
}[δ

a
d {K bc 

+{n/(n+1)} Fl
e
(∂ cKbe 

-∂ bKce)} + δ
a
c{K bd + 

{n/(n+1)}Fl
e 
(∂ dKbe - ∂ bK

 
de)}], 

 As a consequence of  

(3.30) l
a
l
e ∂ bKae = 0 

and 

 (3.31) W a
c = W a

bcdl
b
l
d
. 

We obtain 

(3.32) W a
c= K

a
c
 
- {1/(1-n

2
)}[Fl

a
 K 0c – δ

a
c K 00]. 

 The tensor K is called C-projective Weyl 

curvature. If C-projective Weyl-curvature is vanish 

then a Finsler metric F is called C-projective Weyl 

metric. 

 In view of above discussions, we have 

the following theorems: 

Theorem 3.1: 
Let F be a C-projective Weyl metric. Then prove 

that F is a Weyl metric. 

Proof: 

Let us assume that 

(3.33) K
a
c - {1/(1-n

2
)}[Fl

a
 K 0c – δ

a
c K 00] = 0, 

Contracting (3.33) by l
a 
yields 

(3.34) F
3
 K 0c – lc K 00 = 0, 

 Consequently, 

(3.35) K 0c = F
-3

 lc K 00, 

 By virtue of equations (3.33) and (3.35), 

we obtain 

(3.36) K
a
c = {1/(1-n

2
)}h

a
c K 00, 

 Consequently F is said to be scalar flag 

curvature. Therefore F is a Weyl metric. 

 

Theorem 3.2: 

Let F be a Finsler metric of scalar flag curvature κ. 

Then C-projective Weyl curvature is defined as 

W a
c = (1/3)F

3
l
a
 κc, wherein κc = ∂ cκ. 

Proof: 

The Riemannian curvature of Berwald connection 

is given by[3]: 
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(3.37) K
a
bcd = κ(δ

a
cgbd

 
- δ

a
dgbc) + κbF(δ

a
cFd

 
- 

δ
a
dFc)  

+ (1/3)[F
2
(h

a
cκbd-h

a
dκbc)+κdF(2δ

a
cFb-2δ

a
bFc  

- gbcl
a
) + κcF(2δ

a
dFb

 
- 2δ

a
bFd - gbdl

a
), 

 Wherein 

(3.38) κbc = ∂ cκb. 

 Consequently yields 

(3.39) K
a
b = κF

2
h

a
b, 

 As a consequence, we obtain [9]: 

(3.40) Kbd = (n-1)(κgbd + FFdκb) + (1/3)(n-

2)(F
2
κbd 

+ 2FFbκd), 

(3.41) K 00 = (n
2
-1)κF

2
, 

(3.42) K0c
 
= (n-1)κFFc + (1/3)(n-2)F

2
κc 

(3.43) K 0c = (n
2
-1)(κFFc + (1/3)F

2
κc, 

 By virtue of equations (3.32), (3.39), 

(3.41) and (3.43), we obtain 

(3.44) W a
c = (1/3)F

3
l
a
 κc. 

 

Theorem 3.3: 

If F is a Finsler metric of constant flag curvature 

with K = κ. Then F is C-projective Weyl metric. 

Proof: 

If F is of constant flag curvature κ then equation 

(3.37) reduces in the form 

(3.45) K
a
bcd = κ(δ

a
cgbd

 
- δ

a
dgbc), 

Yields 

(3.46) Kbd = - (n-1)κgbd, 

and 

(3.47) K bd = - (n
2
-1)gbd, 

 By virtue of equations (3.29), (3.46) and 

(3.47) yields 

(3.48) W a
bcd = 0, 

 Consequently yields 

(3.49) W a
c = 0. 

 In Finsler metric F of scalar flag curvature 

with dimension n≥3, we have a projective 

transformation with the projective factor P, we 

have the following conditions: 

(3.50) S ab = Sab + {(n+1)/2}Pab, 

and 

(3.51) S ebG 
e

a = Seb

e
a + PSab + {(n+1)/2}(PebG

e
a  

+ PPab). 

 In view of above discussion, we have the 

following: 

 

Theorem 3.4: 
τ-curvature is C-projective invariant. 

Proof: 

For a projective transformation, we have 

(3.52) τ ab = FS abcl
c
, 

 By virtue of equations (3.50), (3.51) and 

(3.52) yields 

(3.53) τ ab = τab+{(n+1)/2}(Fl
e
λePab-PebG

e
a - 

PaeG
e
b), 

 Consequently follows 

(3.54) Fl
e∂ aQbc

 
= Fl

e
λePab

 
– PebG

e
a – PeaG

e
b, 

 From equations (3.53) and (3.54), we get 

(3.55) τ ab = τab + {(n+1)/2}Fl
e∂ aQbe, 

 If we take C-projective mapping i.e. Qab
 
= 

0. Follows 

(3.55) τ ab = τab. 

  Hence, τ -curvature is C-projective 

invariant. 
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